Newcastle Traffic Classification Using Clustering Algorithms
نویسندگان
چکیده
منابع مشابه
Classification of Flower Images using Clustering Algorithms
This paper presents a flower classification and identification system that takes a flower image as input and identifies it to be belonging to a particular category present in the database. It begins by performing pre-processing operations on the input image. A set of digital images are segmented using k-means clustering algorithm from which texture and color features are extracted. Texture feat...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملOil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)
Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...
متن کاملEmg Signal Classification Using Wavelet Transform and Fuzzy Clustering Algorithms
The electromyographic (EMG) signals can be used as a control source of artificial limbs after it has been processed. The objective of this work is to achieve better classification for four different movements of a prosthetic limb making a time-frequency analysis of EMG signals which covers a feature extraction tools in the problem of the EMG signals while investigating the related dimensionalit...
متن کاملImpact of Patients’ Gender on Parkinson’s disease using Classification Algorithms
In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Engineering and Applied Sciences
سال: 2020
ISSN: 1941-7020
DOI: 10.3844/ajeassp.2020.165.172